The LDBC Social Network Benchmark

Author:

Szárnyas Gábor1,Waudby Jack2,Steer Benjamin A.3,Szakállas Dávid4,Birler Altan5,Wu Mingxi6,Zhang Yuchen6,Boncz Peter1

Affiliation:

1. CWI

2. Newcastle University

3. Pometry

4. Independent contributor

5. Technische Universität, München

6. TigerGraph

Abstract

The Social Network Benchmark's Business Intelligence workload (SNB BI) is a comprehensive graph OLAP benchmark targeting analytical data systems capable of supporting graph workloads. This paper marks the finalization of almost a decade of research in academia and industry via the Linked Data Benchmark Council (LDBC). SNB BI advances the state-of-the art in synthetic and scalable analytical database benchmarks in many aspects. Its base is a sophisticated data generator, implemented on a scalable distributed infrastructure, that produces a social graph with small-world phenomena, whose value properties follow skewed and correlated distributions and where values correlate with structure. This is a temporal graph where all nodes and edges follow lifespan-based rules with temporal skew enabling realistic and consistent temporal inserts and (recursive) deletes. The query workload exploiting this skew and correlation is based on LDBC's "choke point"-driven design methodology and will entice technical and scientific improvements in future (graph) database systems. SNB BI includes the first adoption of "parameter curation" in an analytical benchmark, a technique that ensures stable runtimes of query variants across different parameter values. Two performance metrics characterize peak single-query performance (power) and sustained concurrent query throughput. To demonstrate the portability of the benchmark, we present experimental results on a relational and a graph DBMS. Note that these do not constitute an official LDBC Benchmark Result - only audited results can use this trademarked term.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference80 articles.

1. Fast exact shortest-path distance queries on large networks by pruned landmark labeling

2. BG: A scalable benchmark for interactive social networking actions

3. Tweets are forever

4. Diversified Stress Testing of RDF Data Management Systems

5. Renzo Angles . 2018 . The Property Graph Database Model. In AMW (CEUR Workshop Proceedings) , Vol. 2100 . CEUR-WS.org. http://ceur-ws.org/Vol-2100/paper26.pdf Renzo Angles. 2018. The Property Graph Database Model. In AMW (CEUR Workshop Proceedings), Vol. 2100. CEUR-WS.org. http://ceur-ws.org/Vol-2100/paper26.pdf

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Saving Money for Analytical Workloads in the Cloud;Proceedings of the VLDB Endowment;2024-07

2. Robust Join Processing with Diamond Hardened Joins;Proceedings of the VLDB Endowment;2024-07

3. GraphScope Flex: LEGO-like Graph Computing Stack;Companion of the 2024 International Conference on Management of Data;2024-06-09

4. Simple, Efficient, and Robust Hash Tables for Join Processing;Proceedings of the 20th International Workshop on Data Management on New Hardware;2024-06-09

5. Speeding Up Subgraph Matching Queries with Schema Guided Index;Proceedings of the 2024 3rd International Conference on Networks, Communications and Information Technology;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3