Quasi-Stable Coloring for Graph Compression

Author:

Kayali Moe1,Suciu Dan1

Affiliation:

1. University of Washington

Abstract

We propose quasi-stable coloring , an approximate version of stable coloring. Stable coloring, also called color refinement, is a well-studied technique in graph theory for classifying vertices, which can be used to build compact, lossless representations of graphs. However, its usefulness is limited due to its reliance on strict symmetries. Real data compresses very poorly using color refinement. We propose the first, to our knowledge, approximate color refinement scheme, which we call quasi-stable coloring. By using approximation, we alleviate the need for strict symmetry, and allow for a tradeoff between the degree of compression and the accuracy of the representation. We study three applications: Linear Programming, Max-Flow, and Betweenness Centrality, and provide theoretical evidence in each case that a quasi-stable coloring can lead to good approximations on the reduced graph. Next, we consider how to compute a maximal quasi-stable coloring: we prove that, in general, this problem is NP-hard, and propose a simple, yet effective algorithm based on heuristics. Finally, we evaluate experimentally the quasi-stable coloring technique on several real graphs and applications, comparing with prior approximation techniques.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference45 articles.

1. 2013. Max-flow problem instances in vision. https://vision.cs.uwaterloo.ca/data/maxflow 2013. Max-flow problem instances in vision. https://vision.cs.uwaterloo.ca/data/maxflow

2. Network science

3. Albert-László Barabási and Réka Albert . 1999. Emergence of scaling in random networks. science 286, 5439 ( 1999 ), 509--512. Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random networks. science 286, 5439 (1999), 509--512.

4. Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement

5. A faster algorithm for betweenness centrality*

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. F-TADOC: FPGA-Based Text Analytics Directly on Compression with HLS;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3