A data quality metric (DQM)

Author:

Chung Yeounoh1,Krishnan Sanjay2,Kraska Tim1

Affiliation:

1. Brown University

2. UC Berkeley

Abstract

Data cleaning, whether manual or algorithmic, is rarely perfect leaving a dataset with an unknown number of false positives and false negatives after cleaning. In many scenarios, quantifying the number of remaining errors is challenging because our data integrity rules themselves may be incomplete, or the available gold-standard datasets may be too small to extrapolate. As the use of inherently fallible crowds becomes more prevalent in data cleaning problems, it is important to have estimators to quantify the extent of such errors. We propose novel species estimators to estimate the number of distinct remaining errors in a dataset after it has been cleaned by a set of crowd workers -- essentially, quantifying the utility of hiring additional workers to clean the dataset. This problem requires new estimators that are robust to false positives and false negatives, and we empirically show on three real-world datasets that existing species estimators are unstable for this problem, while our proposed techniques quickly converge.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3