Affiliation:
1. University of California, Irvine
2. X15 Software, Inc.
3. University of California, Los Angeles
Abstract
There is a growing need for distributed graph processing systems that are capable of gracefully scaling to very large graph datasets. Unfortunately, this challenge has not been easily met due to the intense memory pressure imposed by process-centric, message passing designs that many graph processing systems follow. Pregelix is a new open source distributed graph processing system that is based on an iterative dataflow design that is better tuned to handle both in-memory and out-of-core workloads. As such, Pregelix offers improved performance characteristics and scaling properties over current open source systems (e.g., we have seen up to 15X speedup compared to Apache Giraph and up to 35X speedup compared to distributed GraphLab), and more effective use of available machine resources to support Big(ger) Graph Analytics.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献