Compressed linear algebra for large-scale machine learning

Author:

Elgohary Ahmed1,Boehm Matthias2,Haas Peter J.2,Reiss Frederick R.2,Reinwald Berthold2

Affiliation:

1. University of Maryland, College Park, MD

2. IBM Research - Almaden, San Jose, CA

Abstract

Large-scale machine learning (ML) algorithms are often iterative, using repeated read-only data access and I/O-bound matrix-vector multiplications to converge to an optimal model. It is crucial for performance to fit the data into single-node or distributed main memory. General-purpose, heavy- and lightweight compression techniques struggle to achieve both good compression ratios and fast decompression speed to enable block-wise uncompressed operations. Hence, we initiate work on compressed linear algebra (CLA), in which lightweight database compression techniques are applied to matrices and then linear algebra operations such as matrix-vector multiplication are executed directly on the compressed representations. We contribute effective column compression schemes, cache-conscious operations, and an efficient sampling-based compression algorithm. Our experiments show that CLA achieves in-memory operations performance close to the uncompressed case and good compression ratios that allow us to fit larger datasets into available memory. We thereby obtain significant end-to-end performance improvements up to 26x or reduced memory requirements.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finding Materialized Models for Model Reuse;IEEE Transactions on Knowledge and Data Engineering;2023-12-01

2. P4SGD: Programmable Switch Enhanced Model-Parallel Training on Generalized Linear Models on Distributed FPGAs;IEEE Transactions on Parallel and Distributed Systems;2023-08

3. TreeSensing: Linearly Compressing Sketches with Flexibility;Proceedings of the ACM on Management of Data;2023-05-26

4. AWARE: Workload-aware, Redundancy-exploiting Linear Algebra;Proceedings of the ACM on Management of Data;2023-05-26

5. Efficient and Compact Representations of Deep Neural Networks via Entropy Coding;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3