Affiliation:
1. University of Maryland, College Park, MD
2. IBM Research - Almaden, San Jose, CA
Abstract
Large-scale machine learning (ML) algorithms are often iterative, using repeated read-only data access and I/O-bound matrix-vector multiplications to converge to an optimal model. It is crucial for performance to fit the data into single-node or distributed main memory. General-purpose, heavy- and lightweight compression techniques struggle to achieve both good compression ratios and fast decompression speed to enable block-wise uncompressed operations. Hence, we initiate work on compressed linear algebra (CLA), in which lightweight database compression techniques are applied to matrices and then linear algebra operations such as matrix-vector multiplication are executed directly on the compressed representations. We contribute effective column compression schemes, cache-conscious operations, and an efficient sampling-based compression algorithm. Our experiments show that CLA achieves in-memory operations performance close to the uncompressed case and good compression ratios that allow us to fit larger datasets into available memory. We thereby obtain significant end-to-end performance improvements up to 26x or reduced memory requirements.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献