PRESS

Author:

Song Renchu1,Sun Weiwei1,Zheng Baihua2,Zheng Yu3

Affiliation:

1. Fudan University, Shanghai, China and Fudan University, Shanghai, China

2. Singapore Management University, Singapore

3. Microsoft Research, Beijing, China

Abstract

Location data becomes more and more important. In this paper, we focus on the trajectory data, and propose a new framework, namely PRESS ( <u>P</u>aralleled <u>R</u>oad-Network-Based Trajectory Compr<u>ess</u>ion ), to effectively compress trajectory data under road network constraints. Different from existing work, PRESS proposes a novel representation for trajectories to separate the spatial representation of a trajectory from the temporal representation, and proposes a Hybrid Spatial Compression (HSC) algorithm and error Bounded Temporal Compression (BTC) algorithm to compress the spatial and temporal information of trajectories respectively. PRESS also supports common spatial-temporal queries without fully decompressing the data. Through an extensive experimental study on real trajectory dataset, PRESS significantly outperforms existing approaches in terms of saving storage cost of trajectory data with bounded errors.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging trajectory simplification for efficient map-matching on road network;2024 25th IEEE International Conference on Mobile Data Management (MDM);2024-06-24

2. Collectively Simplifying Trajectories in a Database: A Query Accuracy Driven Approach;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. PaTraS: A Path-Preserving Trajectory Simplification Method for Low-Loss Map Matching;Lecture Notes in Computer Science;2024

4. An Improved BLG Tree for Trajectory Compression with Constraints of Road Networks;ISPRS International Journal of Geo-Information;2023-12-20

5. Efficient Mining of Volunteered Trajectory Datasets;Volunteered Geographic Information;2023-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3