Streaming quotient filter

Author:

Dutta Sourav1,Narang Ankur2,Bera Suman K.2

Affiliation:

1. Max Planck Institute for Informatics, Germany

2. IBM Research, India

Abstract

The unparalleled growth and popularity of the Internet coupled with the advent of diverse modern applications such as search engines, on-line transactions, climate warning systems, etc., has catered to an unprecedented expanse in the volume of data stored world-wide. Efficient storage, management, and processing of such massively exponential amount of data has emerged as a central theme of research in this direction. Detection and removal of redundancies and duplicates in real-time from such multi-trillion record-set to bolster resource and compute efficiency constitutes a challenging area of study. The infeasibility of storing the entire data from potentially unbounded data streams, with the need for precise elimination of duplicates calls for intelligent approximate duplicate detection algorithms. The literature hosts numerous works based on the well-known probabilistic bitmap structure, Bloom Filter and its variants. In this paper we propose a novel data structure, Streaming Quotient Filter, (SQF) for efficient detection and removal of duplicates in data streams. SQF intelligently stores the signatures of elements arriving on a data stream, and along with an eviction policy provides near zero false positive and false negative rates. We show that the near optimal performance of SQF is achieved with a very low memory requirement, making it ideal for real-time memory-efficient de-duplication applications having an extremely low false positive and false negative tolerance rates. We present detailed theoretical analysis of the working of SQF, providing a guarantee on its performance. Empirically, we compare SQF to alternate methods and show that the proposed method is superior in terms of memory and accuracy compared to the existing solutions. We also discuss Dynamic SQF for evolving streams and the parallel implementation of SQF.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Learned Cuckoo Filter for Approximate Membership Queries over Variable-sized Sliding Windows on Data Streams;Proceedings of the ACM on Management of Data;2023-12-08

2. Probabilistic Data Structure in smart agriculture;2023 Third International Conference on Secure Cyber Computing and Communication (ICSCCC);2023-05-26

3. Probabilistic data structures in smart city: Survey, applications, challenges, and research directions;Journal of Ambient Intelligence and Smart Environments;2022-07-27

4. Short-Term Memory Sampling for Spread Measurement in High-Speed Networks;IEEE INFOCOM 2022 - IEEE Conference on Computer Communications;2022-05-02

5. Towards Capacity-Adjustable and Scalable Quotient Filter Design for Packet Classification in Software-Defined Networks;IEEE Open Journal of the Computer Society;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3