Local search methods for k-means with outliers

Author:

Gupta Shalmoli1,Kumar Ravi2,Lu Kefu3,Moseley Benjamin3,Vassilvitskii Sergei2

Affiliation:

1. University of Illinois

2. Google

3. Washington University

Abstract

We study the problem of k -means clustering in the presence of outliers. The goal is to cluster a set of data points to minimize the variance of the points assigned to the same cluster, with the freedom of ignoring a small set of data points that can be labeled as outliers. Clustering with outliers has received a lot of attention in the data processing community, but practical, efficient, and provably good algorithms remain unknown for the most popular k -means objective. Our work proposes a simple local search-based algorithm for k -means clustering with outliers. We prove that this algorithm achieves constant-factor approximate solutions and can be combined with known sketching techniques to scale to large data sets. Using empirical evaluation on both synthetic and large-scale real-world data, we demonstrate that the algorithm dominates recently proposed heuristic approaches for the problem.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3