Transforming Property Graphs

Author:

Bonifati Angela1,Murlak Filip2,Ramusat Yann3

Affiliation:

1. Lyon 1 Univ., Liris CNRS & IUF

2. Univ. of Warsaw

3. Lyon 1 Univ., Liris CNRS

Abstract

In this paper, we study a declarative framework for specifying transformations of property graphs. In order to express such transformations, we leverage queries formulated in the Graph Pattern Calculus (GPC), which is an abstraction of the common core of recent standard graph query languages, GQL and SQL/PGQ. In contrast to previous frameworks targeting graph topology only, we focus on the impact of data values on the transformations---which is crucial in addressing users' needs. In particular, we study the complexity of checking if the transformation rules do not specify conflicting values for properties, and we show this is closely related to the satisfiability problem for GPC. We prove that both problems are PSpace-complete. We have implemented our framework in openCypher. We show the flexibility and usability of our framework by leveraging an existing data integration benchmark, adapting it to our needs. We also evaluate the incurred overhead of detecting potential inconsistencies at run-time, and the impact of several optimization tools in a Cypher-based graph database, by providing a comprehensive comparison of different implementation variants. The results of our experimental study show that our framework exhibits large practical benefits for transforming property graphs compared to ad-hoc transformation scripts.

Publisher

Association for Computing Machinery (ACM)

Reference35 articles.

1. Object identity as a query language primitive

2. Transforming RDF-star to Property Graphs;Abuoda Ghadeer;A Preliminary Analysis of Transformation Approaches. In QuWeDa,2022

3. Marcelo Arenas, Pablo Barcelo, Leonid Libkin, and Filip Murlak. 2010. Relational and XML Data Exchange (1st ed.). Morgan and Claypool Publishers.

4. The IBench Integration Metadata Generator;Arocena Patricia C.;VLDB,2015

5. Patricia C. Arocena, Boris Glavic, and Renee J. Miller. 2013. Value Invention in Data Exchange. In SIGMOD. 157--168.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3