A Sampling-Based Framework for Hypothesis Testing on Large Attributed Graphs

Author:

Wang Yun1,Kosyfaki Chrysanthi1,Amer-Yahia Sihem2,Cheng Reynold1

Affiliation:

1. The University of Hong Kong

2. CNRS, Univ. Grenoble Aples

Abstract

Hypothesis testing is a statistical method used to draw conclusions about populations from sample data, typically represented in tables. With the prevalence of graph representations in real-life applications, hypothesis testing on graphs is gaining importance. In this work, we formalize node, edge, and path hypotheses on attributed graphs. We develop a sampling-based hypothesis testing framework, which can accommodate existing hypothesis-agnostic graph sampling methods. To achieve accurate and time-efficient sampling, we then propose a Path-Hypothesis-Aware SamplEr, PHASE, an m -dimensional random walk that accounts for the paths specified in the hypothesis. We further optimize its time efficiency and propose PHASE opt . Experiments on three real datasets demonstrate the ability of our framework to leverage common graph sampling methods for hypothesis testing, and the superiority of hypothesis-aware sampling methods in terms of accuracy and time efficiency.

Publisher

Association for Computing Machinery (ACM)

Reference36 articles.

1. 2015. Yelp Dataset. https://www.yelp.com/dataset.

2. Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A. Huberman. 2001. Search in Power-Law Networks. CoRR cs.NI/0103016 (2001).

3. Ery Arias-Castro and Nicolas Verzelen. 2014. Community detection in dense random networks. (2014).

4. Slim graph

5. Peter J. Bickel and Purnamrita Sarkar. 2013. Hypothesis Testing for Automated Community Detection in Networks. CoRR abs/1311.2694 (2013).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3