Generating Succinct Descriptions of Database Schemata for Cost-Efficient Prompting of Large Language Models

Author:

Trummer Immanuel1

Affiliation:

1. Cornell University, Ithaca, New York, USA

Abstract

Using large language models (LLMs) for tasks like text-to-SQL translation often requires describing the database schema as part of the model input. LLM providers typically charge as a function of the number of tokens read. Hence, reducing the length of the schema description saves money at each model invocation. This paper introduces Schemonic, a system that automatically finds concise text descriptions of relational database schemata. By introducing abbreviations or grouping schema elements with similar properties, Schemonic typically finds descriptions that use significantly fewer tokens than naive schema representations. Internally, Schemonic models schema compression as a combinatorial optimization problem and uses integer linear programming solvers to find guaranteed optimal or near-optimal solutions. It speeds up optimization by starting optimization from heuristic solutions and reducing the search space size via pre-processing. The experiments on TPC-H, SPIDER, and Public-BI demonstrate that Schemonic reduces schema description length significantly, along with fees for reading them, without reducing the accuracy in tasks such as text-to-SQL translation.

Publisher

Association for Computing Machinery (ACM)

Reference40 articles.

1. Md Adnan Arefeen, Biplob Debnath, and Srimat Chakradhar. 2023. LeanContext: Cost-Efficient Domain-Specific Question Answering Using LLMs. CoRR abs/2309.0 (2023), 1--8. arXiv:2309.00841 http://arxiv.org/abs/2309.00841

2. An integer programming approach for the view and index selection problem

3. SPARTAN

4. A survey of approaches to automatic schema matching

5. Compressing SQL workloads

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3