Distributed trajectory similarity search

Author:

Xie Dong1,Li Feifei1,Phillips Jeff M.1

Affiliation:

1. University of Utah

Abstract

Mobile and sensing devices have already become ubiquitous. They have made tracking moving objects an easy task. As a result, mobile applications like Uber and many IoT projects have generated massive amounts of trajectory data that can no longer be processed by a single machine efficiently. Among the typical query operations over trajectories, similarity search is a common yet expensive operator in querying trajectory data. It is useful for applications in different domains such as traffic and transportation optimizations, weather forecast and modeling, and sports analytics. It is also a fundamental operator for many important mining operations such as clustering and classification of trajectories. In this paper, we propose a distributed query framework to process trajectory similarity search over a large set of trajectories. We have implemented the proposed framework in Spark, a popular distributed data processing engine, by carefully considering different design choices. Our query framework supports both the Hausdorff distance the Fréchet distance. Extensive experiments have demonstrated the excellent scalability and query efficiency achieved by our design, compared to other methods and design alternatives.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatiotemporal gated traffic trajectory simulation with semantic-aware graph learning;Information Fusion;2024-08

2. TMan: A High-Performance Trajectory Data Management System Based on Key-Value Stores;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Managing the Future: Route Planning Influence Evaluation in Transportation Systems;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Efficient Learning-based Top-k Representative Similar Subtrajectory Query;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Dynamic trajectory partition optimization method based on historical trajectory data;Applied Soft Computing;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3