Reconciling skyline and ranking queries

Author:

Ciaccia Paolo1,Martinenghi Davide2

Affiliation:

1. Università di Bologna, Italy

2. Politecnico di Milano, Italy

Abstract

Traditionally, skyline and ranking queries have been treated separately as alternative ways of discovering interesting data in potentially large datasets. While ranking queries adopt a specific scoring function to rank tuples, skyline queries return the set of non-dominated tuples and are independent of attribute scales and scoring functions. Ranking queries are thus less general, but usually cheaper to compute and widely used in data management systems. We propose a framework to seamlessly integrate these two approaches by introducing the notion of restricted skyline queries (R-skylines). We propose R-skyline operators that generalize both skyline and ranking queries by applying the notion of dominance to a set of scoring functions of interest. Such sets can be characterized, e.g., by imposing constraints on the function's parameters, such as the weights in a linear scoring function. We discuss the formal properties of these new operators, show how to implement them efficiently, and evaluate them on both synthetic and real datasets.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Best Point Selection under Unreliable User Feedback;Proceedings of the VLDB Endowment;2024-07

2. The Indistinguishability Query;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Efficient and Privacy-Preserving Eclipse Query Over Encrypted Data;GLOBECOM 2023 - 2023 IEEE Global Communications Conference;2023-12-04

4. Decisive skyline queries for truly balancing multiple criteria;Data & Knowledge Engineering;2023-09

5. Quantifying the competitiveness of a dataset in relation to general preferences;The VLDB Journal;2023-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3