Affiliation:
1. Università di Bologna, Italy
2. Politecnico di Milano, Italy
Abstract
Traditionally, skyline and ranking queries have been treated separately as alternative ways of discovering interesting data in potentially large datasets. While ranking queries adopt a specific scoring function to rank tuples, skyline queries return the set of non-dominated tuples and are independent of attribute scales and scoring functions. Ranking queries are thus less general, but usually cheaper to compute and widely used in data management systems.
We propose a framework to seamlessly integrate these two approaches by introducing the notion of restricted skyline queries (R-skylines). We propose R-skyline operators that generalize both skyline and ranking queries by applying the notion of dominance to a set of scoring functions of interest. Such sets can be characterized, e.g., by imposing constraints on the function's parameters, such as the weights in a linear scoring function. We discuss the formal properties of these new operators, show how to implement them efficiently, and evaluate them on both synthetic and real datasets.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献