Fast scans on key-value stores

Author:

Pilman Markus1,Bocksrocker Kevin2,Braun Lucas3,Marroquín Renato4,Kossmann Donald5

Affiliation:

1. Snowflake Computing ETH Zurich

2. Microsoft ETH Zurich

3. Oracle Labs ETH Zurich

4. ETH Zurich

5. Microsoft Research ETH Zurich

Abstract

Key-Value Stores (KVS) are becoming increasingly popular because they scale up and down elastically, sustain high throughputs for get/put workloads and have low latencies. KVS owe these advantages to their simplicity. This simplicity, however, comes at a cost: It is expensive to process complex, analytical queries on top of a KVS because today's generation of KVS does not support an efficient way to scan the data. The problem is that there are conflicting goals when designing a KVS for analytical queries and for simple get/put workloads: Analytical queries require high locality and a compact representation of data whereas elastic get/put workloads require sparse indexes. This paper shows that it is possible to have it all, with reasonable compromises. We studied the KVS design space and built TellStore, a distributed KVS, that performs almost as well as state-of-the-art KVS for get/put workloads and orders of magnitude better for analytical and mixed workloads. This paper presents the results of comprehensive experiments with an extended version of the YCSB benchmark and a workload from the telecommunication industry.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AStore: Uniformed Adaptive Learned Index and Cache for RDMA-Enabled Key-Value Store;IEEE Transactions on Knowledge and Data Engineering;2024-07

2. Brief Announcement: LIT: Lookup Interlocked Table for Range Queries;Proceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures;2024-06-17

3. A quantitative evaluation of persistent memory hash indexes;The VLDB Journal;2023-09-09

4. Accelerating Scan Transaction with Node Locking;2023 IEEE 29th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA);2023-08-30

5. BP-Tree: Overcoming the Point-Range Operation Tradeoff for In-Memory B-Trees;Proceedings of the VLDB Endowment;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3