Affiliation:
1. University of Waterloo
2. QCRI
Abstract
Integrity constraints (ICs) provide a valuable tool for enforcing correct application semantics. However, designing ICs requires experts and time. Proposals for automatic discovery have been made for some formalisms, such as functional dependencies and their extension conditional functional dependencies. Unfortunately, these dependencies cannot express many common business rules. For example, an American citizen cannot have lower salary and higher tax rate than another citizen in the same state. In this paper, we tackle the challenges of discovering dependencies in a more expressive integrity constraint language, namely Denial Constraints (DCs). DCs are expressive enough to overcome the limits of previous languages and, at the same time, have enough structure to allow efficient discovery and application in several scenarios. We lay out theoretical and practical foundations for DCs, including a set of sound inference rules and a linear algorithm for implication testing. We then develop an efficient instance-driven DC discovery algorithm and propose a novel scoring function to rank DCs for user validation. Using real-world and synthetic datasets, we experimentally evaluate scalability and effectiveness of our solution.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
148 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献