Aggregating semantic annotators

Author:

Chen Luying1,Ortona Stefano1,Orsi Giorgio1,Benedikt Michael1

Affiliation:

1. Oxford University, UK

Abstract

A growing number of resources are available for enriching documents with semantic annotations. While originally focused on a few standard classes of annotations, the ecosystem of annotators is now becoming increasingly diverse. Although annotators often have very different vocabularies, with both high-level and specialist concepts, they also have many semantic interconnections. We will show that both the overlap and the diversity in annotator vocabularies motivate the need for semantic annotation integration: middleware that produces a unified annotation on top of diverse semantic annotators. On the one hand, the diversity of vocabulary allows applications to benefit from the much richer vocabulary available in an integrated vocabulary. On the other hand, we present evidence that the most widely-used annotators on the web suffer from serious accuracy deficiencies: the overlap in vocabularies from individual annotators allows an integrated annotator to boost accuracy by exploiting inter-annotator agreement and disagreement. The integration of semantic annotations leads to new challenges, both compared to usual data integration scenarios and to standard aggregation of machine learning tools. We overview an approach to these challenges that performs ontology-aware aggregation. We introduce an approach that requires no training data, making use of ideas from database repair. We experimentally compare this with a supervised approach, which adapts maximal entropy Markov models to the setting of ontology-based annotations. We further experimentally compare both these approaches with respect to ontology-unaware supervised approaches, and to individual annotators.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3