Towards plug-and-play visual graph query interfaces

Author:

Yuan Zifeng1,Chua Huey Eng2,Bhowmick Sourav S2,Ye Zekun1,Han Wook-Shin3,Choi Byron4

Affiliation:

1. Fudan University & NTU

2. Nanyang Technological University

3. POSTECH

4. Hong Kong Baptist University

Abstract

Canned patterns ( i.e. , small subgraph patterns) in visual graph query interfaces (a.k.a GUI) facilitate efficient query formulation by enabling pattern-at-a-time construction mode. However, existing GUIS for querying large networks either do not expose any canned patterns or if they do then they are typically selected manually based on domain knowledge. Unfortunately, manual generation of canned patterns is not only labor intensive but may also lack diversity for supporting efficient visual formulation of a wide range of subgraph queries. In this paper, we present a novel, generic, and extensible framework called TATTOO that takes a data-driven approach to automatically select canned patterns for a GUI from large networks. Specifically, it first decomposes the underlying network into truss-infested and truss-oblivious regions. Then candidate canned patterns capturing different real-world query topologies are generated from these regions. Canned patterns based on a user-specified plug are then selected for the GUI from these candidates by maximizing coverage and diversity , and by minimizing the cognitive load of the pattern set. Experimental studies with real-world datasets demonstrate the benefits of TATTOO. Importantly, this work takes a concrete step towards realizing plug-and-play visual graph query interfaces for large networks.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cognitive Psychology Meets Data Management: State of the Art and Future Directions;Companion of the 2024 International Conference on Management of Data;2024-06-09

2. VisualNeo: Bridging the Gap between Visual Query Interfaces and Graph Query Engines;Proceedings of the VLDB Endowment;2023-08

3. Theories and Principles Matter: Towards Visually Appealing and Effective Abstraction of Property Graph Queries;Proceedings of the ACM on Management of Data;2023-06-13

4. Pattern Selection for Large Networks;Synthesis Lectures on Data Management;2023

5. The Building Block of PnP Interfaces: Canned Patterns;Synthesis Lectures on Data Management;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3