CHEF

Author:

Wu Yinjun1,Weimer James1,Davidson Susan B.1

Affiliation:

1. University of Pennsylvania

Abstract

High-quality labels are expensive to obtain for many machine learning tasks, such as medical image classification tasks. Therefore, probabilistic (weak) labels produced by weak supervision tools are used to seed a process in which influential samples with weak labels are identified and cleaned by several human annotators to improve the model performance. To lower the overall cost and computational overhead of this process, we propose a solution called CHEF (CHEap and Fast label cleaning), which consists of the following three components. First, to reduce the cost of human annotators, we use INFL, which prioritizes the most influential training samples for cleaning and provides cleaned labels to save the cost of one human annotator. Second, to accelerate the sample selector phase and the model constructor phase, we use Increm-INFL to incrementally produce influential samples, and DeltaGrad-L to incrementally update the model. Third, we redesign the typical label cleaning pipeline so that human annotators iteratively clean smaller batch of samples rather than one big batch of samples. This yields better overall model performance and enables possible early termination when the expected model performance has been achieved. Extensive experiments show that our approach gives good model prediction performance while achieving significant speed-ups.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data cleaning and machine learning: a systematic literature review;Automated Software Engineering;2024-06-11

2. MisDetect: Iterative Mislabel Detection using Early Loss;Proceedings of the VLDB Endowment;2024-02

3. Label Engineering Methods for ML Systems;Lecture Notes in Networks and Systems;2024

4. How I stopped worrying about training data bugs and started complaining;Proceedings of the Sixth Workshop on Data Management for End-To-End Machine Learning;2022-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3