Auto-pipeline

Author:

Yang Junwen1,He Yeye2,Chaudhuri Surajit2

Affiliation:

1. University of Chicago

2. Microsoft Research

Abstract

Recent work has made significant progress in helping users to automate single data preparation steps, such as string-transformations and table-manipulation operators (e.g., Join, GroupBy, Pivot, etc.). We in this work propose to automate multiple such steps end-to-end, by synthesizing complex data-pipelines with both string-transformations and table-manipulation operators. We propose a novel by-target paradigm that allows users to easily specify the desired pipeline, which is a significant departure from the traditional by-example paradigm. Using by-target, users would provide input tables (e.g., csv or json files), and point us to a "target table" (e.g., an existing database table or BI dashboard) to demonstrate how the output from the desired pipeline would schematically "look like". While the problem is seemingly under-specified, our unique insight is that implicit table constraints such as FDs and keys can be exploited to significantly constrain the space and make the problem tractable. We develop an AUTO-PIPELINE system that learns to synthesize pipelines using deep reinforcement-learning (DRL) and search. Experiments using a benchmark of 700 real pipelines crawled from GitHub and commercial vendors suggest that AUTO-PIPELINE can successfully synthesize around 70% of complex pipelines with up to 10 steps.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Auto-Tables: Relationalize Tables without Using Examples;ACM SIGMOD Record;2024-05-14

2. Higher-Order SQL Lambda Functions;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. DATALORE: Can a Large Language Model Find All Lost Scrolls in a Data Repository?;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Gen-T: Table Reclamation in Data Lakes;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. KGLiDS: A Platform for Semantic Abstraction, Linking, and Automation of Data Science;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3