Odyssey: A Journey in the Land of Distributed Data Series Similarity Search

Author:

Chatzakis Manos1,Fatourou Panagiota2,Kosmas Eleftherios3,Palpanas Themis4,Peng Botao5

Affiliation:

1. EPFL

2. FORTH, ICS & University of Crete, CSD

3. FORTH, ICS & Hellenic Mediterranean University & University of Crete, CSD

4. Université Paris Cité & IUF

5. Institute of Computing Technology, Chinese Academy of Sciences

Abstract

This paper presents Odyssey, a novel distributed data-series processing framework that efficiently addresses the critical challenges of exhibiting good speedup and ensuring high scalability in data series processing by taking advantage of the full computational capacity of modern distributed systems comprised of multi-core servers. Odyssey addresses a number of challenges in designing efficient and highly-scalable distributed data series index, including efficient scheduling, and load-balancing without paying the prohibitive cost of moving data around. It also supports a flexible partial replication scheme, which enables Odyssey to navigate through a fundamental trade-off between data scalability and good performance during query answering. Through a wide range of configurations and using several real and synthetic datasets, our experimental analysis demonstrates that Odyssey achieves its challenging goals.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference81 articles.

1. Cilk: An Efficient Multithreaded Runtime System

2. 2016. Incorporated Research Institutions for Seismology - Seismic Data Access. http://ds.iris.edu/data/access/. 2016. Incorporated Research Institutions for Seismology - Seismic Data Access. http://ds.iris.edu/data/access/.

3. 2022. Odyssey code and datasets. https://helios2.mi.parisdescartes.fr/~themisp/odyssey/. 2022. Odyssey code and datasets. https://helios2.mi.parisdescartes.fr/~themisp/odyssey/.

4. Rakesh Agrawal , Christos Faloutsos , and Arun N . Swami . 1993 . Efficient Similarity Search In Sequence Databases. In FODO, David B. Lomet (Ed .). Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. 1993. Efficient Similarity Search In Sequence Databases. In FODO, David B. Lomet (Ed.).

5. Distributed Computing

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3