Optimistic Data Parallelism for FPGA-Accelerated Sketching

Author:

Kiefer Martin1,Poulakis Ilias1,Zacharatou Eleni Tzirita2,Markl Volker3

Affiliation:

1. Technische Universität Berlin, Germany

2. IT University of Copenhagen, Denmark

3. Technische Universität Berlin, DFKI GmbH, Germany

Abstract

Sketches are a popular approximation technique for large datasets and high-velocity data streams. While custom FPGA-based hardware has shown admirable throughput at sketching, the state-of-the-art exploits data parallelism by fully replicating resources and constructing independent summaries for every parallel input value. We consider this approach pessimistic, as it guarantees constant processing rates by provisioning resources for the worst case. We propose a novel optimistic sketching architecture for FPGAs that partitions a single sketch into multiple independent banks shared among all input values, thus significantly reducing resource consumption. However, skewed input data distributions can result in conflicting accesses to banks and impair the processing rate. To mitigate the effect of skew, we add mergers that exploit temporal locality by combining recent updates. Our evaluation shows that an optimistic architecture is feasible and reduces the utilization of critical FPGA resources proportionally to the number of parallel input values. We further show that FPGA accelerators provide up to 2.6 x higher throughput than a recent CPU and GPU, while larger sketch sizes enabled by optimistic architectures improve accuracy by up to an order of magnitude in a realistic sketching application.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference30 articles.

1. Mergeable summaries

2. A workload characterization study of the 1998 World Cup Web site

3. CAIDA. 2019. Anonymized Internet Traces 2019 . https://catalog.caida.org/details/dataset/passive_2019_pcap. Accessed: 2022-2-28. CAIDA. 2019. Anonymized Internet Traces 2019. https://catalog.caida.org/details/dataset/passive_2019_pcap. Accessed: 2022-2-28.

4. Ufuk Celebi. 2015. How Apache Flink handles backpressure. https://www.ververica.com/blog/how-flink-handles-backpressure. Ufuk Celebi. 2015. How Apache Flink handles backpressure. https://www.ververica.com/blog/how-flink-handles-backpressure.

5. SKT

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3