SpaceSaving ±

Author:

Zhao Fuheng1,Agrawal Divyakant1,Abbadi Amr El1,Metwally Ahmed2

Affiliation:

1. UC Santa Barbara

2. Uber, Inc.

Abstract

In this paper, we propose the first deterministic algorithms to solve the frequency estimation and frequent item problems in the bounded-deletion model. We establish the space lower bound for solving the deterministic frequent items problem in the bounded-deletion model, and propose Lazy SpaceSaving ± and SpaceSaving ± algorithms with optimal space bound. We develop an efficient implementation of the SpaceSaving ± algorithm that minimizes the latency of update operations using novel data structures. The experimental evaluations testify that SpaceSaving ± has accurate frequency estimations and achieves very high recall and precision across different data distributions while using minimal space. Our experiments clearly demonstrate that, if allowed the same space, SpaceSaving± is more accurate than the state-of-the-art protocols with up to logU - 1/ logU of the items deleted, where U is the size of the input universe. Moreover, motivated by prior work, we propose Dyadic SpaceSaving ± , the first deterministic quantile approximation sketch in the bounded-deletion model.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference49 articles.

1. [n.d.]. Anonymized Internet Traces 2015 . https://catalog.caida.org/details/dataset/passive_2015_pcap. Accessed: 2021-11-5. [n.d.]. Anonymized Internet Traces 2015. https://catalog.caida.org/details/dataset/passive_2015_pcap. Accessed: 2021-11-5.

2. Mergeable summaries

3. The Space Complexity of Approximating the Frequency Moments

4. An information statistics approach to data stream and communication complexity

5. Designing Heavy-Hitter Detection Algorithms for Programmable Switches

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scalable Overspeed Item Detection in Streams;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3