ByteGNN

Author:

Zheng Chenguang1,Chen Hongzhi2,Cheng Yuxuan2,Song Zhezheng3,Wu Yifan4,Li Changji1,Cheng James3,Yang Hao2,Zhang Shuai2

Affiliation:

1. The Chinese University of Hong Kong and ByteDacne Inc

2. ByteDacne Inc

3. The Chinese University of Hong Kong

4. ByteDacne Inc and Peking University

Abstract

Graph neural networks (GNNs) have shown excellent performance in a wide range of applications such as recommendation, risk control, and drug discovery. With the increase in the volume of graph data, distributed GNN systems become essential to support efficient GNN training. However, existing distributed GNN training systems suffer from various performance issues including high network communication cost, low CPU utilization, and poor end-to-end performance. In this paper, we propose ByteGNN, which addresses the limitations in existing distributed GNN systems with three key designs: (1) an abstraction of mini-batch graph sampling to support high parallelism, (2) a two-level scheduling strategy to improve resource utilization and to reduce the end-to-end GNN training time, and (3) a graph partitioning algorithm tailored for GNN workloads. Our experiments show that ByteGNN outperforms the state-of-the-art distributed GNN systems with up to 3.5--23.8 times faster end-to-end execution, 2--6 times higher CPU utilization, and around half of the network communication cost.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference81 articles.

1. 2019. Euler. https://github.com/alibaba/euler. 2019. Euler. https://github.com/alibaba/euler.

2. 2019. Gremlin. http://tinkerpop.apache.org/gremlin.html. 2019. Gremlin. http://tinkerpop.apache.org/gremlin.html.

3. 2019. TinkerPop. http://tinkerpop.apache.org/. 2019. TinkerPop. http://tinkerpop.apache.org/.

4. 2020. GraphLearn. https://github.com/alibaba/graph-learn. 2020. GraphLearn. https://github.com/alibaba/graph-learn.

5. Martín Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , Manjunath Kudlur , Josh Levenberg , Rajat Monga , Sherry Moore , Derek Gordon Murray , Benoit Steiner , Paul A. Tucker , Vijay Vasudevan , Pete Warden , Martin Wicke , Yuan Yu , and Xiaoqiang Zheng . 2016 . TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016 , Savannah, GA, USA, November 2--4 , 2016. USENIX Association, 265--283. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2--4, 2016. USENIX Association, 265--283. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systems for Scalable Graph Analytics and Machine Learning: Trends and Methods;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. MSPipe: Efficient Temporal GNN Training via Staleness-Aware Pipeline;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. GNNDrive: Reducing Memory Contention and I/O Congestion for Disk-based GNN Training;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

4. BGS: Accelerate GNN training on multiple GPUs;Journal of Systems Architecture;2024-08

5. GE 2 : A General and Efficient Knowledge Graph Embedding Learning System;Proceedings of the ACM on Management of Data;2024-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3