PR-sketch

Author:

Sheng Siyuan1,Huang Qun2,Wang Sa1,Bao Yungang1

Affiliation:

1. University of Chinese Academy of Sciences

2. Peking University

Abstract

Computing per-key aggregation is indispensable in streaming data analysis formulated as two phases, an update phase and a recovery phase. As the size and speed of data streams rise, accurate per-key information is useful in many applications like anomaly detection, attack prevention, and online diagnosis. Even though many algorithms have been proposed for per-key aggregation in stream processing, their accuracy guarantees only cover a small portion of keys. In this paper, we aim to achieve nearly full accuracy with limited resource usage. We follow the line of sketch-based techniques. We observe that existing methods suffer from high errors for most keys. The reason is that they track keys by complicated mechanism in the update phase and simply calculate per-key aggregation from some specific counter in the recovery phase. Therefore, we present PR-Sketch, a novel sketching design to address the two limitations. PR-Sketch builds linear equations between counter values and per-key aggregations to improve accuracy, and records keys in the recovery phase to reduce resource usage in the update phase. We also provide an extension called fast PR-Sketch to improve processing rate further. We derive space complexity, time complexity, and guaranteed error probability for both PR-Sketch and fast PR-Sketch. We conduct trace-driven experiments under 100K keys and 1M items to compare our algorithms with multiple state-of-the-art methods. Results demonstrate the resource efficiency and nearly full accuracy of our algorithms.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SatShield: In-Network Mitigation of Link Flooding Attacks for LEO Constellation Networks;IEEE Internet of Things Journal;2024-08-15

2. Lightweight Acquisition and Ranging of Flows in the Data Plane;ACM SIGMETRICS Performance Evaluation Review;2024-06-11

3. Lightweight Acquisition and Ranging of Flows in the Data Plane;Abstracts of the 2024 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems;2024-06-10

4. DISCO: A Dynamically Configurable Sketch Framework in Skewed Data Streams;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. CodingSketch: A Hierarchical Sketch with Efficient Encoding and Recursive Decoding;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3