Affiliation:
1. University of Illinois (UIUC) and University of California
2. University of California
Abstract
Computational notebooks have emerged as the platform of choice for data science and analytical workflows, enabling rapid iteration and exploration. By keeping intermediate program state in memory and segmenting units of execution into so-called "cells", notebooks allow users to enjoy particularly tight feedback. However, as cells are added, removed, reordered, and rerun, this hidden intermediate state accumulates, making execution behavior difficult to reason about, and leading to errors and lack of reproducibility. We present nbsafety, a custom Jupyter kernel that uses runtime tracing and static analysis to automatically manage lineage associated with cell execution and global notebook state. nbsafety detects and prevents errors that users make during unaided notebook interactions, all while preserving the flexibility of existing notebook semantics. We evaluate nbsafety's ability to prevent erroneous interactions by replaying and analyzing 666 real notebook sessions. Of these, nbsafety identified 117 sessions with potential safety errors, and in the remaining 549 sessions, the cells that nbsafety identified as resolving safety issues were more than 7X more likely to be selected by users for re-execution compared to a random baseline, even though the users were not using nbsafety and were therefore not influenced by its suggestions.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献