Affiliation:
1. Peking University, China
2. Alibaba Group, Hangzhou, China
3. Zhejiang Lab, China
Abstract
Searching a community containing a given query vertex in an online social network enjoys wide applications like recommendation, team organization, etc. When applied to real-life networks, the existing approaches face two major limitations. First, they usually take two steps,
i.e.
, crawling a large part of the network first and then finding the community next, but the entire network is usually too big and most of the data are not interesting to end users. Second, the existing methods utilize hand-crafted rules to measure community membership, while it is very difficult to define effective rules as the communities are flexible for different query vertices. In this paper, we propose an Interactive Community Search method based on Graph Neural Network (shortened by ICS-GNN) to locate the target community over a subgraph collected on the fly from an online network. Specifically, we recast the community membership problem as a vertex classification problem using GNN, which captures similarities between the graph vertices and the query vertex by combining content and structural features seamlessly and flexibly under the guide of users' labeling. We then introduce a
k
-sized Maximum-GNN-scores (shortened by
kMG
) community to describe the target community. We next discover the target community iteratively and interactively. In each iteration, we build a candidate subgraph using the crawled pages with the guide of the query vertex and labeled vertices, infer the vertex scores with a GNN model trained on the subgraph, and discover the
kMG
community which will be evaluated by end users to acquire more feedback. Besides, two optimization strategies are proposed to combine ranking loss into the GNN model and search more space in the target community location. We conduct the experiments in both offline and online real-life data sets, and demonstrate that ICS-GNN can produce effective communities with low overhead in communication, computation, and user labeling.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献