Building enclave-native storage engines for practical encrypted databases

Author:

Sun Yuanyuan1,Wang Sheng1,Li Huorong1,Li Feifei1

Affiliation:

1. Alibaba Group

Abstract

Data confidentiality is one of the biggest concerns that hinders enterprise customers from moving their workloads to the cloud. Thanks to the trusted execution environment (TEE), it is now feasible to build encrypted databases in the enclave that can process customers' data while keeping it confidential to the cloud. Though some enclave-based encrypted databases emerge recently, there remains a large unexplored area in between about how confidentiality can be achieved in different ways and what influences are implied by them. In this paper, we first provide a broad exploration of possible design choices in building encrypted database storage engines, rendering trade-offs in security, performance and functionality. We observe that choices on different dimensions can be independent and their combination determines the overall trade-off of the entire storage. We then propose Enclage , an encrypted storage engine that makes practical trade-offs. It adopts many enclave-native designs, such as page-level encryption, reduced enclave interaction, and hierarchical memory buffer, which offer high-level security guarantee and high performance at the same time. To make better use of the limited enclave memory, we derive the optimal page size in enclave and adopt delta decryption to access large data pages with low cost. Our experiments show that Enclage outperforms the baseline, a common storage design in many encrypted databases, by over 13x in throughput and about 5x in storage savings.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3