An experimental evaluation of task assignment in spatial crowdsourcing

Author:

Cheng Peng1,Jian Xun1,Chen Lei1

Affiliation:

1. Hong Kong University of Science and Technology, Hong Kong, China

Abstract

Recently, with the rapid development of mobile devices and the crowdsourcing platforms, the spatial crowdsourcing has attracted much attention from the database community. Specifically, spatial crowdsourcing refers to sending a location-based request to workers according to their positions, and workers need to physically move to specified locations to conduct tasks. Many works have studied task assignment problems in spatial crowdsourcing, however, their problem settings are different from each other. Thus, it is hard to compare the performances of existing algorithms on task assignment in spatial crowdsourcing. In this paper, we present a comprehensive experimental comparison of most existing algorithms on task assignment in spatial crowdsourcing. Specifically, we first give general definitions about spatial workers and spatial tasks based on definitions in the existing works such that the existing algorithms can be applied on the same synthetic and real data sets. Then, we provide a uniform implementation for all the tested algorithms of task assignment problems in spatial crowdsourcing (open sourced). Finally, based on the results on both synthetic and real data sets, we discuss the strengths and weaknesses of tested algorithms, which can guide future research on the same area and practical implementations of spatial crowdsourcing systems.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Competition and Cooperation: Global Task Assignment in Spatial Crowdsourcing;IEEE Transactions on Knowledge and Data Engineering;2023-10-01

2. A Data-driven Region Generation Framework for Spatiotemporal Transportation Service Management;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

3. An optimized task assignment framework based on crowdsourcing knowledge graph and prediction;Knowledge-Based Systems;2023-01

4. Drive Less but Finish More;Proceedings of the 31st ACM International Conference on Information & Knowledge Management;2022-10-17

5. P-Ride: A Shareability Prediction Based Framework in Ridesharing;Electronics;2022-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3