ModelarDB

Author:

Jensen Søren Kejser1,Pedersen Torben Bach1,Thomsen Christian1

Affiliation:

1. Aalborg University, Denmark

Abstract

Industrial systems, e.g., wind turbines, generate big amounts of data from reliable sensors with high velocity. As it is unfeasible to store and query such big amounts of data, only simple aggregates are currently stored. However, aggregates remove fluctuations and outliers that can reveal underlying problems and limit the knowledge to be gained from historical data. As a remedy, we present the distributed Time Series Management System (TSMS) ModelarDB that uses models to store sensor data. We thus propose an online, adaptive multi-model compression algorithm that maintains data values within a user-defined error bound (possibly zero). We also propose (i) a database schema to store time series as models, (ii) methods to push-down predicates to a key-value store utilizing this schema, (iii) optimized methods to execute aggregate queries on models, (iv) a method to optimize execution of projections through static code-generation, and (v) dynamic extensibility that allows new models to be used without recompiling the TSMS. Further, we present a general modular distributed TSMS architecture and its implementation, ModelarDB, as a portable library, using Apache Spark for query processing and Apache Cassandra for storage. An experimental evaluation shows that, unlike current systems, ModelarDB hits a sweet spot and offers fast ingestion, good compression, and fast, scalable online aggregate query processing at the same time. This is achieved by dynamically adapting to data sets using multiple models. The system degrades gracefully as more outliers occur and the actual errors are much lower than the bounds.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Why Model-Based Lossy Compression is Great for Wind Turbine Analytics;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. AdaEdge: A Dynamic Compression Selection Framework for Resource Constrained Devices;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. DeepMapping: Learned Data Mapping for Lossless Compression and Efficient Lookup;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Big Data Storage and Analysis System for Space Application;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

5. High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Multi-component Interpolation;Proceedings of the ACM on Management of Data;2024-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3