Robustness metrics for relational query execution plans

Author:

Wolf Florian1,Brendle Michael2,May Norman3,Willems Paul R.3,Sattler Kai-Uwe4,Grossniklaus Michael5

Affiliation:

1. TU Ilmenau, SAP SE

2. University of Konstanz, SAP SE

3. SAP SE

4. TU Ilmenau

5. University of Konstanz

Abstract

The quality of query execution plans in database systems determines how fast a query can be executed. It has been shown that conventional query optimization still selects sub-optimal or even bad execution plans, due to errors in the cardinality estimation. Although cardinality estimation errors are an evident problem, they are in general not considered in the selection of query execution plans. In this paper, we present three novel metrics for the robustness of relational query execution plans w.r.t. cardinality estimation errors. We also present a novel plan selection strategy that takes both, estimated cost and estimated robustness into account, when choosing a plan for execution. Finally, we share the results of our experimental comparison between robust and conventional plan selection on real world and synthetic benchmarks, showing a speedup of at most factor 3.49.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RobOpt: A Tool for Robust Workload Optimization Based on Uncertainty-Aware Machine Learning;Companion of the 2024 International Conference on Management of Data;2024-06-09

2. Robust Query Optimization in the Era of Machine Learning: State-of-the-Art and Future Directions;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Sub-optimal Join Order Identification with L1-error;Proceedings of the ACM on Management of Data;2024-03-12

4. Optimism and Pessimism in Database Query Optimisation;2024 IEEE 18th International Conference on Semantic Computing (ICSC);2024-02-05

5. Efficient Query Re-optimization with Judicious Subquery Selections;Proceedings of the ACM on Management of Data;2023-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3