Affiliation:
1. Qatar Computing Research Institute, HBKU, Qatar
2. Nanyang Technological University, Singapore
Abstract
Despite the efforts in 70+ years in all aspects of entity resolution (ER), there is still a high demand for democratizing ER - by reducing the heavy human involvement in labeling data, performing feature engineering, tuning parameters, and defining blocking functions. With the recent advances in deep learning, in particular distributed representations of words (
a.k.a
. word embeddings), we present a novel ER system, called D
eep
ER, that achieves good accuracy, high efficiency, as well as ease-of-use (
i.e
., much less human efforts). We use sophisticated composition methods, namely uni- and bi-directional recurrent neural networks (RNNs) with long short term memory (LSTM) hidden units, to convert each tuple to a distributed representation (
i.e
., a vector), which can in turn be used to effectively capture similarities between tuples. We consider both the case where pre-trained word embeddings are available as well the case where they are not; we present ways to learn and tune the distributed representations that are customized for a specific ER task under different scenarios. We propose a locality sensitive hashing (LSH) based blocking approach that takes all attributes of a tuple into consideration and produces much smaller blocks, compared with traditional methods that consider only a few attributes. We evaluate our algorithms on multiple datasets (including benchmarks, biomedical data, as well as multi-lingual data) and the extensive experimental results show that D
eep
ER outperforms existing solutions.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
197 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献