Affiliation:
1. The Chinese University of Hong Kong, China
2. Peking University, China
Abstract
The gap between unstructured natural language and structured data makes it challenging to build a system that supports using natural language to query large knowledge graphs. Many existing methods construct a structured query for the input question based on a syntactic parser. Once the input question is parsed incorrectly, a false structured query will be generated, which may result in false or incomplete answers. The problem gets worse especially for complex questions. In this paper, we propose a novel systematic method to understand natural language questions by using a large number of binary templates rather than semantic parsers. As sufficient templates are critical in the procedure, we present a low-cost approach that can build a huge number of templates automatically. To reduce the search space, we carefully devise an index to facilitate the online template decomposition. Moreover, we design effective strategies to perform the two-level disambiguations (i.e., entity-level ambiguity and structure-level ambiguity) by considering the query semantics. Extensive experiments over several benchmarks demonstrate that our proposed approach is effective as it significantly outperforms state-of-the-art methods in terms of both precision and recall.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献