Homerun

Author:

Almutairi Faisal M.1,Yang Fan2,Song Hyun Ah3,Faloutsos Christos3,Sidiropoulos Nicholas4,Zadorozhny Vladimir2

Affiliation:

1. University of Minnesota

2. University of Pittsburgh

3. Carnegie Mellon University

4. University of Virginia

Abstract

Recovering a time sequence of events from multiple aggregated and possibly overlapping reports is a major challenge in historical data fusion. The goal is to reconstruct a higher resolution event sequence from a mixture of lower resolution samples as accurately as possible. For example, we may aim to disaggregate overlapping monthly counts of people infected with measles into weekly counts. In this paper, we propose a novel data disaggregation method, called H ome R un , that exploits an alternative representation of the sequence and finds the spectrum of the target sequence. More specifically, we formulate the problem as so-called basis pursuit using the Discrete Cosine Transform (DCT) as a sparsifying dictionary and impose non-negativity and smoothness constraints. H ome R un utilizes the energy compaction feature of the DCT by finding the sparsest spectral representation of the target sequence that contains the largest (most important) coefficients. We leverage the Alternating Direction Method of Multipliers to solve the resulting optimization problem with scalable and memory efficient steps. Experiments using real epidemiological data show that our method considerably outperforms the state-of-the-art techniques, especially when the DCT of the sequence has a high degree of energy compaction.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Localization of Unidentified Events with Raw Microblogging Data;Online Social Networks and Media;2022-05

2. Prema: Principled Tensor Data Recovery From Multiple Aggregated Views;IEEE Journal of Selected Topics in Signal Processing;2021-04

3. A-Cure: An accurate information reconstruction from inaccurate data sources;Information Systems;2020-07

4. TurboLift: fast accuracy lifting for historical data recovery;The VLDB Journal;2020-03-09

5. Tendi: Tensor Disaggregation from Multiple Coarse Views;Advances in Knowledge Discovery and Data Mining;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3