Mining attribute-structure correlated patterns in large attributed graphs

Author:

Silva Arlei1,Meira Wagner1,Zaki Mohammed J.2

Affiliation:

1. Universidade Federal de Minas Gerais, Belo Horizonte, Brasil

2. Rensselaer Polytechnic Institute, Troy, NY

Abstract

In this work, we study the correlation between attribute sets and the occurrence of dense subgraphs in large attributed graphs, a task we call structural correlation pattern mining. A structural correlation pattern is a dense subgraph induced by a particular attribute set. Existing methods are not able to extract relevant knowledge regarding how vertex attributes interact with dense subgraphs. Structural correlation pattern mining combines aspects of frequent itemset and quasi-clique mining problems. We propose statistical significance measures that compare the structural correlation of attribute sets against their expected values using null models. Moreover, we evaluate the interestingness of structural correlation patterns in terms of size and density. An efficient algorithm that combines search and pruning strategies in the identification of the most relevant structural correlation patterns is presented. We apply our method for the analysis of three real-world attributed graphs: a collaboration, a music, and a citation network, verifying that it provides valuable knowledge in a feasible time.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3