Large-scale distributed graph computing systems

Author:

Lu Yi1,Cheng James1,Yan Da1,Wu Huanhuan1

Affiliation:

1. The Chinese University of Hong Kong

Abstract

With the prevalence of graph data in real-world applications (e.g., social networks, mobile phone networks, web graphs, etc.) and their ever-increasing size, many distributed graph computing systems have been developed in recent years to process and analyze massive graphs. Most of these systems adopt Pregel's vertex-centric computing model, while various techniques have been proposed to address the limitations in the Pregel framework. However, there is a lack of comprehensive comparative analysis to evaluate the performance of various systems and their techniques, making it difficult for users to choose the best system for their applications. We conduct extensive experiments to evaluate the performance of existing systems on graphs with different characteristics and on algorithms with different design logic. We also study the effectiveness of various techniques adopted in existing systems, and the scalability of the systems. The results of our study reveal the strengths and limitations of existing systems, and provide valuable insights for users, researchers and system developers.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. G2-AIMD: A Memory-Efficient Subgraph-Centric Framework for Efficient Subgraph Finding on GPUs;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Graph Database;Graph Database and Graph Computing for Power System Analysis;2023-09-29

3. Introduction;Graph Database and Graph Computing for Power System Analysis;2023-09-29

4. The Graph-Massivizer Approach Toward a European Sustainable Data Center Digital Twin;2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC);2023-06

5. Efficient Parallel Processing of All-Pairs Shortest Paths on Multicore and GPU Systems;IEEE Transactions on Consumer Electronics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3