An incremental Hausdorff distance calculation algorithm

Author:

Nutanong Sarana1,Jacox Edwin H.1,Samet Hanan1

Affiliation:

1. University of Maryland, College Park, Maryland

Abstract

The Hausdorff distance is commonly used as a similarity measure between two point sets. Using this measure, a set X is considered similar to Y iff every point in X is close to at least one point in Y . Formally, the Hausdorff distance HausDist( X, Y ) can be computed as the Max-Min distance from X to Y , i.e., find the maximum of the distance from an element in X to its nearest neighbor (NN) in Y . Although this is similar to the closest pair and farthest pair problems, computing the Hausdorff distance is a more challenging problem since its Max-Min nature involves both maximization and minimization rather than just one or the other. A traditional approach to computing HausDist( X, Y ) performs a linear scan over X and utilizes an index to help compute the NN in Y for each x in X . We present a pair of basic solutions that avoid scanning X by applying the concept of aggregate NN search to searching for the element in X that yields the Hausdorff distance. In addition, we propose a novel method which incrementally explores the indexes of the two sets X and Y simultaneously. As an example application of our techniques, we use the Hausdorff distance as a measure of similarity between two trajectories (represented as point sets). We also use this example application to compare the performance of our proposed method with the traditional approach and the basic solutions. Experimental results show that our proposed method outperforms all competitors by one order of magnitude in terms of the tree traversal cost and total response time.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3