Database isolation by scheduling

Author:

Gaffney Kevin P.1,Claus Robert2,Patel Jignesh M.1

Affiliation:

1. University of Wisconsin-Madison

2. DataChat Inc.

Abstract

Transaction isolation is conventionally achieved by restricting access to the physical items in a database. To maximize performance, isolation functionality is often packaged with recovery, I/O, and data access methods in a monolithic transactional storage manager. While this design has historically afforded high performance in online transaction processing systems, industry trends indicate a growing need for a new approach in which intertwined components of the transactional storage manager are disaggregated into modular services. This paper presents a new method to modularize the isolation component. Our work builds on predicate locking, an isolation mechanism that enables this modularization by locking logical rather than physical items in a database. Predicate locking is rarely used as the core isolation mechanism because of its high theoretical complexity and perceived overhead. However, we show that this overhead can be substantially reduced in practice by optimizing for common predicate structures. We present DIBS, a transaction scheduler that employs our predicate locking optimizations to guarantee isolation as a modular service. We evaluate the performance of DIBS as the sole isolation mechanism in a data processing system. In this setting, DIBS scales up to 10.5 million transactions per second on a TATP workload. We also explore how DIBS can be applied to existing database systems to increase transaction throughput. DIBS reduces per-transaction file system writes by 90% on TATP in SQLite, resulting in a 3X improvement in throughput. Finally, DIBS reduces row contention on YCSB in MySQL, providing serializable isolation with a 1.4X improvement in throughput.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CredsCache: Making OverlayFS scalable for containerized services;Future Generation Computer Systems;2023-10

2. Leopard: A Black-Box Approach for Efficiently Verifying Various Isolation Levels;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3