ELPIS: Graph-Based Similarity Search for Scalable Data Science

Author:

Azizi Ilias1,Echihabi Karima2,Palpanas Themis3

Affiliation:

1. UM6P, Université Paris Cité

2. UM6P

3. Université Paris Cité & IUF

Abstract

The recent popularity of learned embeddings has fueled the growth of massive collections of high-dimensional (high-d) vectors that model complex data. Finding similar vectors in these collections is at the core of many important and practical data science applications. The data series community has developed tree-based similarity search techniques that outperform state-of-the-art methods on large collections of both data series and generic high-d vectors, on all scenarios except for no-guarantees ng -approximate search, where graph-based approaches designed by the high-d vector community achieve the best performance. However, building graph-based indexes is extremely expensive both in time and space. In this paper, we bring these two worlds together, study the corresponding solutions and their performance behavior, and propose ELPIS, a new strong baseline that takes advantage of the best features of both to achieve a superior performance in terms of indexing and ng-approximate search in-memory. ELPIS builds the index 3x-8x faster than competitors, using 40% less memory. It also achieves a high recall of 0.99, up to 2x faster than the state-of-the-art methods, and answers 1-NN queries up to one order of magnitude faster.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference128 articles.

1. Elpis Archive . http://www.mi.parisdescartes.fr/~themisp/elpis/ , 2022 . Elpis Archive. http://www.mi.parisdescartes.fr/~themisp/elpis/, 2022.

2. R. Agrawal , C. Faloutsos , and A. Swami . Efficient similarity search in sequence databases . pages 69 -- 84 , 1993 . R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence databases. pages 69--84, 1993.

3. U. Alon , M. Zilberstein , O. Levy , and E. Yahav . Code2vec: Learning distributed representations of code. 3(POPL) , 2019 . U. Alon, M. Zilberstein, O. Levy, and E. Yahav. Code2vec: Learning distributed representations of code. 3(POPL), 2019.

4. HD-index: Pushing the Scalability-accuracy Boundary for Approximate kNN Search;Arora A.;High-dimensional Spaces. PVLDB,2018

5. M. Aumüller , E. Bernhardsson , and A. Faithfull . Ann-benchmarks: A benchmarking tool for approximate nearest neighbor algorithms . In International Conference on Similarity Search and Applications , pages 34 -- 49 . Springer , 2017 . M. Aumüller, E. Bernhardsson, and A. Faithfull. Ann-benchmarks: A benchmarking tool for approximate nearest neighbor algorithms. In International Conference on Similarity Search and Applications, pages 34--49. Springer, 2017.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3