LANNS

Author:

Doshi Ishita1,Das Dhritiman1,Bhutani Ashish2,Kumar Rajeev1,Bhatt Rushi3,Balasubramanian Niranjan1

Affiliation:

1. LinkedIn

2. Uber

3. Compass

Abstract

Nearest neighbor search (NNS) has a wide range of applications in information retrieval, computer vision, machine learning, databases, and other areas. Existing state-of-the-art algorithm for nearest neighbor search, Hierarchical Navigable Small World Networks (HNSW), is unable to scale to large datasets of 100M records in high dimensions. In this paper, we propose LANNS, an end-to-end platform for Approximate Nearest Neighbor Search, which scales for web-scale datasets. Library for Large Scale Approximate Nearest Neighbor Search (LANNS) is deployed in multiple production systems for identifying top-K (100 ≤ k ≤ 200) approximate nearest neighbors with a latency of a few milliseconds per query, high throughput of ~2.5k Queries Per Second (QPS) on a single node, on large (e.g., ~ 180M data points) high dimensional (50-2048 dimensional) datasets.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference31 articles.

1. Data-dependent hashing via nonlinear spectral gaps

2. Optimal Data-Dependent Hashing for Approximate Near Neighbors

3. HD-index

4. Martin Aumuller , Erik Bernhardsson , and Alexander John Faithfull . 2018. ANN benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms. CoRR abs / 1807 .05614 (2018), 1--20. arXiv:1807.05614 http://arxiv.org/abs/1807.05614 Martin Aumuller, Erik Bernhardsson, and Alexander John Faithfull. 2018. ANN benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms. CoRR abs / 1807.05614 (2018), 1--20. arXiv:1807.05614 http://arxiv.org/abs/1807.05614

5. Data-Dependent Hashing Based on p-Stable Distribution

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search for GPUs;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Efficient Storage and Retrieval of Similar Data in Edge Computing Systems;2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS);2023-12-17

3. Large-scale response-aware online ANN search in dynamic datasets;Cluster Computing;2023-10-14

4. Prophet: An Efficient Feature Indexing Mechanism for Similarity Data Sharing at Network Edge;IEEE INFOCOM 2023 - IEEE Conference on Computer Communications;2023-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3