Bagua

Author:

Gan Shaoduo1,Jiang Jiawei1,Yuan Binhang1,Zhang Ce1,Lian Xiangru2,Wang Rui2,Chang Jianbin2,Liu Chengjun2,Shi Hongmei2,Zhang Shengzhuo2,Li Xianghong2,Sun Tengxu2,Yang Sen2,Liu Ji2

Affiliation:

1. ETH Zürich, Switzerland

2. kuaishou technology, China

Abstract

Recent years have witnessed a growing list of systems for distributed data-parallel training. Existing systems largely fit into two paradigms, i.e., parameter server and MPI-style collective operations. On the algorithmic side, researchers have proposed a wide range of techniques to lower the communication via "system relaxations": quantization, decentralization, and communication delay. However, most, if not all, existing systems only rely on standard synchronous and asynchronous stochastic gradient (SG) based optimization, therefore, cannot take advantage of all possible optimizations that the machine learning community has been developing recently. Given this emerging gap between the current landscapes of systems and theory, we build Bagua, a MPI-style communication library, providing a collection of primitives, that is both flexible and modular to support state-of-the-art system relaxation techniques of distributed training. Powered by this design, Bagua has a great ability to implement and extend various state-of-the-art distributed learning algorithms. In a production cluster with up to 16 machines (128 GPUs), Bagua can outperform PyTorch-DDP, Horovod and BytePS in the end-to-end training time by a significant margin (up to 2X) across a diverse range of tasks. Moreover, we conduct a rigorous tradeoff exploration showing that different algorithms and system relaxations achieve the best performance over different network conditions.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference82 articles.

1. [n.d.]. Apex. https://nvidia.github.io/apex/optimizers.html. [n.d.]. Apex. https://nvidia.github.io/apex/optimizers.html.

2. [n.d.]. NCCL. https://developer.nvidia.com/nccl. [n.d.]. NCCL. https://developer.nvidia.com/nccl.

3. Martín Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , 2016 . Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16). 265--283. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16). 265--283.

4. Dan Alistarh , Demjan Grubic , Jerry Li , Ryota Tomioka , and Milan Vojnovic . 2016 . QSGD: Communication-efficient SGD via gradient quantization and encoding. arXiv preprint arXiv:1610.02132 (2016). Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2016. QSGD: Communication-efficient SGD via gradient quantization and encoding. arXiv preprint arXiv:1610.02132 (2016).

5. Dan Alistarh , Torsten Hoefler , Mikael Johansson , Sarit Khirirat , Nikola Konstantinov , and Cédric Renggli . 2018 . The convergence of sparsified gradient methods . In Proceedings of the 32nd International Conference on Neural Information Processing Systems. 5977--5987 . Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric Renggli. 2018. The convergence of sparsified gradient methods. In Proceedings of the 32nd International Conference on Neural Information Processing Systems. 5977--5987.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multidimensional Communication Scheduling Method for Hybrid Parallel DNN Training;IEEE Transactions on Parallel and Distributed Systems;2024-08

2. Gsyn: Reducing Staleness and Communication Waiting via Grouping-based Synchronization for Distributed Deep Learning;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

3. Orion: Interference-aware, Fine-grained GPU Sharing for ML Applications;Proceedings of the Nineteenth European Conference on Computer Systems;2024-04-22

4. Decentralized bilevel optimization;Optimization Letters;2024-03-26

5. A Novel Federated Learning Framework Based on Conditional Generative Adversarial Networks for Privacy Preserving in 6G;Electronics;2024-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3