1. [n.d.]. Apex. https://nvidia.github.io/apex/optimizers.html. [n.d.]. Apex. https://nvidia.github.io/apex/optimizers.html.
2. [n.d.]. NCCL. https://developer.nvidia.com/nccl. [n.d.]. NCCL. https://developer.nvidia.com/nccl.
3. Martín Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , 2016 . Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16). 265--283. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16). 265--283.
4. Dan Alistarh , Demjan Grubic , Jerry Li , Ryota Tomioka , and Milan Vojnovic . 2016 . QSGD: Communication-efficient SGD via gradient quantization and encoding. arXiv preprint arXiv:1610.02132 (2016). Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2016. QSGD: Communication-efficient SGD via gradient quantization and encoding. arXiv preprint arXiv:1610.02132 (2016).
5. Dan Alistarh , Torsten Hoefler , Mikael Johansson , Sarit Khirirat , Nikola Konstantinov , and Cédric Renggli . 2018 . The convergence of sparsified gradient methods . In Proceedings of the 32nd International Conference on Neural Information Processing Systems. 5977--5987 . Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric Renggli. 2018. The convergence of sparsified gradient methods. In Proceedings of the 32nd International Conference on Neural Information Processing Systems. 5977--5987.