Robust and budget-constrained encoding configurations for in-memory database systems

Author:

Boissier Martin1

Affiliation:

1. University of Potsdam, Potsdam, Germany

Abstract

Data encoding has been applied to database systems for decades as it mitigates bandwidth bottlenecks and reduces storage requirements. But even in the presence of these advantages, most in-memory database systems use data encoding only conservatively as the negative impact on runtime performance can be severe. Real-world systems with large parts being infrequently accessed and cost efficiency constraints in cloud environments require solutions that automatically and efficiently select encoding techniques, including heavy-weight compression. In this paper, we introduce workload-driven approaches to automaticaly determine memory budget-constrained encoding configurations using greedy heuristics and linear programming. We show for TPC-H, TPC-DS, and the Join Order Benchmark that optimized encoding configurations can reduce the main memory footprint significantly without a loss in runtime performance over state-of-the-art dictionary encoding. To yield robust selections, we extend the linear programming-based approach to incorporate query runtime constraints and mitigate unexpected performance regressions.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference75 articles.

1. Integrating compression and execution in column-oriented database systems

2. Mert Akdere , Ugur Çetintemel , Matteo Riondato , Eli Upfal , and Stanley B. Zdonik . 2012 . Learning-based Query Performance Modeling and Prediction. In IEEE 28th International Conference on Data Engineering, ICDE. 390--401 . Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik. 2012. Learning-based Query Performance Modeling and Prediction. In IEEE 28th International Conference on Data Engineering, ICDE. 390--401.

3. An inquiry into machine learning-based automatic configuration tuning services on real-world database management systems

4. Martin Boissier and Max Jendruk . 2019. Workload-Driven and Robust Selection of Compression Schemes for Column Stores . In Advances in Database Technology - 22nd International Conference on Extending Database Technology, EDBT. 674--677. Martin Boissier and Max Jendruk. 2019. Workload-Driven and Robust Selection of Compression Schemes for Column Stores. In Advances in Database Technology - 22nd International Conference on Extending Database Technology, EDBT. 674--677.

5. Martin Boissier , Rainer Schlosser , and Matthias Uflacker . 2018 . Hybrid Data Layouts for Tiered HTAP Databases with Pareto-Optimal Data Placements. In 34th IEEE International Conference on Data Engineering, ICDE. 209--220 . Martin Boissier, Rainer Schlosser, and Matthias Uflacker. 2018. Hybrid Data Layouts for Tiered HTAP Databases with Pareto-Optimal Data Placements. In 34th IEEE International Conference on Data Engineering, ICDE. 209--220.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AdaEdge: A Dynamic Compression Selection Framework for Resource Constrained Devices;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. CoCo-trie: Data-aware compression and indexing of strings;Information Systems;2024-02

3. AWARE: Workload-aware, Redundancy-exploiting Linear Algebra;Proceedings of the ACM on Management of Data;2023-05-26

4. Enterprise Platform and Integration Concepts Research at HPI;ACM SIGMOD Record;2023-01-09

5. Budget-Conscious Fine-Grained Configuration Optimization for Spatio-Temporal Applications;Proceedings of the VLDB Endowment;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3