OEBench: Investigating Open Environment Challenges in Real-World Relational Data Streams

Author:

Diao Yiqun1,Yang Yutong1,Li Qinbin2,He Bingsheng1,Lu Mian3

Affiliation:

1. National University of Singapore

2. University of California, Berkeley

3. 4Paradigm Inc.

Abstract

How to get insights from relational data streams in a timely manner is a hot research topic. Data streams can present unique challenges, such as distribution drifts, outliers, emerging classes, and changing features, which have recently been described as open environment challenges for machine learning. While existing studies have been done on incremental learning for data streams, their evaluations are mostly conducted with synthetic datasets. Thus, a natural question is how those open environment challenges look like and how existing incremental learning algorithms perform on real-world relational data streams. To fill this gap, we develop an Open Environment Benchmark named OEBench to evaluate open environment challenges in real-world relational data streams. Specifically, we investigate 55 real-world relational data streams and establish that open environment scenarios are indeed widespread, which presents significant challenges for stream learning algorithms. Through benchmarks with existing incremental learning algorithms, we find that increased data quantity may not consistently enhance the model accuracy when applied in open environment scenarios, where machine learning models can be significantly compromised by missing values, distribution drifts, or anomalies in real-world data streams. The current techniques are insufficient in effectively mitigating these challenges brought by open environments. More researches are needed to address real-world open environment challenges. All datasets and code are open-sourced in https://github.com/Xtra-Computing/OEBench.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3