MetaStore: Analyzing Deep Learning Meta-Data at Scale

Author:

Zhang Huayi1,Yan Binwei2,Cao Lei3,Madden Samuel4,Rundensteiner Elke5

Affiliation:

1. WPI, Data Science, Worcester, MA

2. MIT, Cambridge, MA

3. U of Arizona, CS; MIT, CSAIL, Cambridge, MA

4. MIT, CSAIL, Cambridge, MA

5. WPI, Computer Science, Worcester, MA

Abstract

The process of training deep learning models produces a huge amount of meta-data, including but not limited to losses, hidden feature embeddings, and gradients. Model diagnosis tools have been developed to analyze losses and feature embeddings with the aim to improve the performance of these models. However, gradients, despite carrying rich information that is potentially relevant for model interpretation and data debugging, have yet to be fully explored due to their size and complexity. Each single gradient has a size as large as the number of parameters of the neural net - often measured in the tens of millions. This makes it extremely challenging to efficiently collect, store, and analyze large numbers of gradients in these models. In this work, we develop MetaStore to fill this gap. MetaStore leverages our observation that storing certain compact intermediate results produced in the back propagation process, namely, the prefix and suffix gradients, is sufficient for the exact restoration of the original gradient. These prefix and suffix gradients are much more compact than the original gradients, thus allowing us to address the gradient collection and storage challenges. Furthermore, MetaStore features a rich set of analytics operators that allow the users to analyze the gradients for data debugging or model interpretation. Rather than first having to restore the original gradients and then run analytics on top of this decompressed view, MetaStore directly executes these operators on the compact prefix and suffix structures, making gradient-based analytics efficient and scalable. Our experiments on popular deep learning models such as VGG, BERT, and ResNet and benchmark image and text datasets demonstrate that MetaStore outperforms strong baseline methods from 4 to 678x in storage costs and from 2 to 1000x in running time.

Publisher

Association for Computing Machinery (ACM)

Reference56 articles.

1. Deep Learning with Differential Privacy

2. A. F. Aji and K. Heafield. Sparse communication for distributed gradient descent. arXiv preprint arXiv:1704.05021, 2017.

3. D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-efficient sgd via gradient quantization and encoding. Advances in neural information processing systems, 30, 2017.

4. ModelTracker

5. Qsparse-local-sgd: Distributed sgd with quantization, sparsification and local computations;Basu D.;Advances in Neural Information Processing Systems,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3