FluidKV: Seamlessly Bridging the Gap between Indexing Performance and Memory-Footprint on Ultra-Fast Storage

Author:

Lu Ziyi1,Cao Qiang1,Jiang Hong2,Chen Yuxing3,Yao Jie1,Pan Anqun3

Affiliation:

1. Huazhong University of Science and Technology, China

2. UT Arlington, TX, USA

3. Tencent Inc., China

Abstract

Our extensive experiments reveal that existing key-value stores (KVSs) achieve high performance at the expense of a huge memory footprint that is often impractical or unacceptable. Even with the emerging ultra-fast byte-addressable persistent memory (PM), KVSs fall far short of delivering the high performance promised by PM's superior I/O bandwidth. To find the root causes and bridge the huge performance/memory-footprint gap, we revisit the architectural features of two representative indexing mechanisms (single-stage and multi-stage) and propose a three-stage KVS called FluidKV. FluidKV effectively consolidates these indexes by fast and seamlessly running incoming key-value request stream from the write-concurrent frontend stage to the memory-efficient backend stage across an intermediate stage. FluidKV also designs important enabling techniques, such as thread-exclusive logging, PM-friendly KV-block structures, and dual-grained indexes, to fully utilize both parallel-processing and high-bandwidth capabilities of ultra-fast storage hardware while reducing the overhead. We implemented a FluidKV prototype and evaluated it under a variety of workloads. The results show that FluidKV outperforms the state-of-the-art PM-aware KVSs, including ListDB and FlatStore with different indexes, by up to 9× and 3.9× in write and read throughput respectively, while cutting up to 90% of the DRAM footprint.

Publisher

Association for Computing Machinery (ACM)

Reference65 articles.

1. Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin Gim, Jungmin Kim, Jaemin Jung, Oliver Rebholz, Vincent Pham, Krishna T. Malladi, and Yang-Seok Ki. 2022. Enabling CXL Memory Expansion for In-Memory Database Management Systems. In International Conference on Management of Data, DaMoN 2022, Philadelphia, PA, USA, 13 June 2022. 8:1--8:5.

2. Spin-transfer torque magnetic random access memory (STT-MRAM)

3. Viper

4. Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. 2018. HOT: A Height Optimized Trie Index for Main-Memory Database Systems. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018. 521--534.

5. Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020. Characterizing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook. In 18th USENIX Conference on File and Storage Technologies (FAST 20). Santa Clara, CA, 209--223.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OnionDisk: A Log-Structured Write-Optimal Virtual Block Device;Proceedings of the 15th ACM SIGOPS Asia-Pacific Workshop on Systems;2024-09-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3