Querying with access patterns and integrity constraints

Author:

Benedikt Michael1,Leblay Julien1,Tsamoura Efthymia1

Affiliation:

1. Oxford University, UK

Abstract

Traditional query processing involves a search for plans formed by applying algebraic operators on top of primitives representing access to relations in the input query. But many querying scenarios involve two interacting issues that complicate the search. On the one hand, the search space may be limited by access restrictions associated with the interfaces to datasources, which require certain parameters to be given as inputs. On the other hand, the search space may be extended through the presence of integrity constraints that relate sources to each other, allowing for plans that do not match the structure of the user query. In this paper we present the first optimization approach that attacks both these difficulties within a single framework, presenting a system in which classical cost-based join optimization is extended to support both access-restrictions and constraints. Instead of iteratively exploring subqueries of the input query, our optimizer explores a space of proofs that witness the answering of the query, where each proof has a direct correspondence with a query plan.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed query execution under access restrictions;Computers & Security;2023-04

2. PDQ 2.0;ACM SIGMOD Record;2023-01-09

3. Exploiting the Power of Equality-Generating Dependencies in Ontological Reasoning;Proceedings of the VLDB Endowment;2022-09

4. When Can We Answer Queries Using Result-Bounded Data Interfaces?;Logical Methods in Computer Science;2022-06-02

5. Data science with Vadalog: Knowledge Graphs with machine learning and reasoning in practice;Future Generation Computer Systems;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3