Personal insights for altering decisions of tree-based ensembles over time

Author:

Boer Naama1,Deutch Daniel1,Frost Nave1,Milo Tova1

Affiliation:

1. Tel Aviv University

Abstract

Machine Learning models are prevalent in critical human-related decision making, such as resume filtering and loan applications. Refused individuals naturally ask what could change the decision, should they reapply. This question is hard for the model owner to answer: first, the model is typically complex and not easily interpretable; second, models may be updated periodically; and last, attributes of the individual seeking approval are apt to change in time. While each of these challenges have been extensively studied in isolation, their conjunction has not. To this end, we propose a novel framework that allows users to devise a plan of action to individuals in presence of Machine Learning classification, where both the ML model and the user properties are expected to change over time. Our technical solution is currently confined to a particular yet important class of models, namely those of tree-based ensembles (Random Forests, Gradient Boosted trees). In this setting it uniquely combines state-of-the-art solutions for single model interpretation, domain adaptation techniques for predicting future models, and constraint databases to represent and query the space of possible actions. We devise efficient algorithms that leverage these foundations in a novel solution, and experimentally show that they are effective in proposing useful and actionable steps leading to the desired classification.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CFDB: Machine Learning Model Analysis via Databases of CounterFactuals;Proceedings of the 2022 International Conference on Management of Data;2022-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3