Graph synopses, sketches, and streams

Author:

Guha Sudipto1,McGregor Andrew2

Affiliation:

1. University of Pennsylvania, Philadelphia, PA

2. University of Massachusetts Amherst, Amherst, MA

Abstract

Massive graphs arise in any application where there is data about both basic entities and the relationships between these entities, e.g., web-pages and hyperlinks; neurons and synapses; papers and citations; IP addresses and network flows; people and their friendships. Graphs have also become the de facto standard for representing many types of highly structured data. However, the sheer size of many of these graphs renders classical algorithms inapplicable when it comes to analyzing such graphs. In addition, these existing algorithms are typically ill-suited to processing distributed or stream data. Various platforms have been developed for processing large data sets. At the same time, there is the need to develop new algorithmic ideas and paradigms. In the case of graph processing, a lot of recent work has focused on understanding the important algorithmic issues. An central aspect of this is the question of how to construct and leverage small-space synopses in graph processing. The goal of this tutorial is to survey recent work on this question and highlight interesting directions for future research.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SIM: A fast real-time graph stream summarization with improved memory efficiency and accuracy;Computer Networks;2024-06

2. Newton Sketches: Estimating Node Intimacy in Dynamic Graphs Using Newton's Law of Cooling;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. A Sketch Framework for Fast, Accurate and Fine-Grained Analysis of Application Traffic;The Computer Journal;2023-12-20

4. An Efficient Data Structure for Dynamic Graph on GPUs;IEEE Transactions on Knowledge and Data Engineering;2023-11-01

5. Graph Stream Sketch: Summarizing Graph Streams With High Speed and Accuracy;IEEE Transactions on Knowledge and Data Engineering;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3