Analyzing and mitigating data stalls in DNN training

Author:

Mohan Jayashree1,Phanishayee Amar2,Raniwala Ashish3,Chidambaram Vijay4

Affiliation:

1. University of Texas at Austin

2. Microsoft Research

3. Microsoft

4. University of Texas at Austin & VMWare Research

Abstract

Training Deep Neural Networks (DNNs) is resource-intensive and time-consuming. While prior research has explored many different ways of reducing DNN training time, the impact of input data pipeline , i.e., fetching raw data items from storage and performing data pre-processing in memory, has been relatively unexplored. This paper makes the following contributions: (1) We present the first comprehensive analysis of how the input data pipeline affects the training time of widely-used computer vision and audio Deep Neural Networks (DNNs), that typically involve complex data pre-processing. We analyze nine different models across three tasks and four datasets while varying factors such as the amount of memory, number of CPU threads, storage device, GPU generation etc on servers that are a part of a large production cluster at Microsoft. We find that in many cases, DNN training time is dominated by data stall time : time spent waiting for data to be fetched and pre-processed. (2) We build a tool, DS-Analyzer to precisely measure data stalls using a differential technique, and perform predictive what-if analysis on data stalls. (3) Finally, based on the insights from our analysis, we design and implement three simple but effective techniques in a data-loading library, CoorDL, to mitigate data stalls. Our experiments on a range of DNN tasks, models, datasets, and hardware configs show that when PyTorch uses CoorDL instead of the state-of-the-art DALI data loading library, DNN training time is reduced significantly (by as much as 5X on a single server).

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobilizing underutilized storage nodes via job path: A job-aware file striping approach;Parallel Computing;2024-09

2. A Selective Preprocessing Offloading Framework for Reducing Data Traffic in DL Training;Proceedings of the 16th ACM Workshop on Hot Topics in Storage and File Systems;2024-07-08

3. PreSto: An In-Storage Data Preprocessing System for Training Recommendation Models;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

4. RAP: Resource-aware Automated GPU Sharing for Multi-GPU Recommendation Model Training and Input Preprocessing;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2;2024-04-27

5. FPGA-Accelerated Data Preprocessing for Personalized Recommendation Systems;IEEE Computer Architecture Letters;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3