Zen

Author:

Liu Gang1,Chen Leying1,Chen Shimin1

Affiliation:

1. University of Chinese Academy of Sciences

Abstract

Emerging <u>N</u>on-<u>V</u>olatile <u>M</u>emory (NVM) technologies like 3DX-point promise significant performance potential for OLTP databases. However, transactional databases need to be redesigned because the key assumptions that non-volatile storage is orders of magnitude slower than DRAM and only supports blocked-oriented access have changed. NVMs are byte-addressable and almost as fast as DRAM. The capacity of NVM is much (4-16x) larger than DRAM. Such NVM characteristics make it possible to build OLTP database entirely in NVM main memory. This paper studies the structure of OLTP engines with hybrid NVM and DRAM memory. We observe three challenges to design an OLTP engine for NVM: tuple metadata modifications, NVM write redundancy, and NVM space management. We propose Zen, a high-throughput log-free OLTP engine for NVM. Zen addresses the three design challenges with three novel techniques: metadata enhanced tuple cache, log-free persistent transactions, and light-weight NVM space management. Experimental results on a real machine equipped with Intel Optane DC Persistent Memory show that Zen achieves up to 10.1x improvement compared with existing solutions to run an OLTP database as large as the size of NVM while achieving fast failure recovery.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploiting Persistent CPU Cache for Scalable Persistent Hash Index;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

2. Fir: Achieving High Throughput and Fast Recovery in Non-Volatile Memory Oltp Engine;2024

3. Falcon: Fast OLTP Engine for Persistent Cache and Non-Volatile Memory;Proceedings of the 29th Symposium on Operating Systems Principles;2023-10-23

4. On the Performance Intricacies of Persistent Memory Aware Storage Engines;IEEE Transactions on Knowledge and Data Engineering;2023-10-01

5. Limon: A Scalable and Stable Key-Value Engine for Fast NVMe Devices;IEEE Transactions on Computers;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3