Exemplar queries

Author:

Mottin Davide1,Lissandrini Matteo1,Velegrakis Yannis1,Palpanas Themis2

Affiliation:

1. University of Trento

2. Paris Descartes University

Abstract

Search engines are continuously employing advanced techniques that aim to capture user intentions and provide results that go beyond the data that simply satisfy the query conditions. Examples include the personalized results, related searches, similarity search, popular and relaxed queries. In this work we introduce a novel query paradigm that considers a user query as an example of the data in which the user is interested. We call these queries exemplar queries and claim that they can play an important role in dealing with the information deluge. We provide a formal specification of the semantics of such queries and show that they are fundamentally different from notions like queries by example, approximate and related queries. We provide an implementation of these semantics for graph-based data and present an exact solution with a number of optimizations that improve performance without compromising the quality of the answers. We also provide an approximate solution that prunes the search space and achieves considerably better time-performance with minimal or no impact on effectiveness. We experimentally evaluate the effectiveness and efficiency of these solutions with synthetic and real datasets, and illustrate the usefulness of exemplar queries in practice.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient and robust active learning methods for interactive database exploration;The VLDB Journal;2023-11-16

2. Interactive SPARQL query formulation using provenance;Knowledge and Information Systems;2023-09-13

3. Knowledge Graphs Querying;ACM SIGMOD Record;2023-08-10

4. Promoting Document Relevance Using Query Term Proximity for Exploratory Search;International Journal of Information Retrieval Research;2023-06-27

5. Ver: View Discovery in the Wild;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3